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X-ray 
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per year
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Publications 
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Advanced Photon Source



Building Longer-lasting Batteries
at the Advanced Photon Source

X-ray image 
from within 
a battery 

REAL-TIME BATTERY EXAMINATION 
DURING CHARGE/DISCHARGE
APS X-rays track decays and 
defects as they form.  

BATTERY 
COMPONENTS
Assembled and tested in the 
APS electrochemistry lab.



Better Catalysts for Cleaner Air

Microscopic catalysts can 
be examined by X-rays to 
improve their efficiency. 

Better catalysts could lead to 
cleaner hydrogen production for 
the next generation of vehicles. 

at the Advanced Photon Source



Microelectronics

Scan FOV: 50 μm diameter



Development of 
Paxlovid enabled by 
data collected 
at the IMCA-CAT 
beamline at the APS.

!

PROTEIN CRYSTALLOGRAPHY
APS: A leader in structural biology



Advanced Photon 
Source Upgrade



APS-U: The Ultimate 3D Microscope
A next-generation synchrotron light source for science and industry
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HIGH ENERGY
Penetrating bulk materials 
and operating systems

BRIGHTNESS
Providing time-resolved, macroscopic 
fields of view with nm-scale resolution

COHERENCE
Enabling highest spatial resolution 
even in non-periodic materials

100 nm CuAsW



4th Generation Synchrotron Projects

§ ESRF 2020

§ 22 synchrotrons planning 4th generation
§ APS will be the brightest hard X-ray synchrotron after APS-U delivery by 2024 

§ SLS 2025

§ Elettra 2027

§ Petra-IV 2029

§ Max-IV 2016

§ Soleil 2026

§ Diamond 2029 § HEPS 2024§ APS 2024

§ ALS 2026

§ Sirius 2019

§ Brownfield projects 
§ Greenfield projects



Beamline Enhancements Scope
§ Beamline Enhancements scope touches all 

the beamlines (in red)
§ All the main enhancements are on ID 

beamlines and are for Optics and some 
instruments

§ Total of 15 ID beamlines are receiving 
enhancements

§ All existing BM beamlines (19) will require 
realignment during the shutdown due to 
shift in source

§ Ray tracings for all beamlines being 
standardized

§ Radiation Safety components for all 
beamlines will be updated if needed

13ESAC Meeting – July 14-15, 2020

APS Upgrade: The Ultimate 3D Microscope
A next-generation synchrotron light source for science and industry
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§ Completely new 
storage ring, 42 pm 
emittance @ 6 GeV, 
200 mA

§ New and updated 
insertion devices

§ Combined result in 
brightness increases 
of up to 500x

§ 9 new feature 
beamlines (green)

§ 15 beamline 
enhancements (red)

$815 M project to 
update and renew 
the facility

Re-uses $1.5 B in 
existing 
infrastructure



x500

$815M

$1.5B
1313

Assembled magnets for the 
upgraded storage ring

First new beamline instrument 
up and running

Long Beamline Building, which will 
house two feature beamlines

New front end systems to deliver 
X-ray beams to experiments



APS-U – High Brightness Storage Ring Lattice

eo = 3100 pm.rad

APS-U 7-bend achromat lattice
eo = 42 pm.rad

APS Upgrade

APS double bend lattice 

APS Today APS Today



Data Deluge, Challenges 
and Opportunities 



A data deluge
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Advanced Computing and Data Management is 
Crucial to Address Drastic Increases in Data
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Increased source brightness (orders-of-
magnitude brighter)
§ Due to facility upgrades and accelerator 

improvements

New and more complex experiments
§ Multi-modal experiments that combine data 

from multiple samples, techniques, and 
facilities

§ In situ and in operando experiments require 
real-time feedback and autonomous control

Detector advances (orders-of-magnitude 
faster)
§ Increased dynamic range
§ Faster readout rates
§ Larger pixel arrays

Analyze and reconstruct 
massive multi-modal data volumes

Merge simulation and experiment data 
to drive experiments and new results

Identify and classify features and 
patterns

Execute experiments dynamically 
using real-time reduction and AI/ML



Local compute resources 
§ Perform pre-analysis/data reduction (including 

compression and running ML models) to a form 
that allows quality control and experiment steering

§ This may include, for example, a GPU workstation 
at a beamline, or the APS computing cluster

High-end compute resources 
§ Large data processing tasks, ML training, post-

processing, and data refinement
§ The APS has facility allocations at the Argonne 

Leadership Computing Facility
§ The Argonne Leadership Computing Facility now 

provides a resource allocation queue/policy that 
suites APS job size and frequency profiles

Computing Resources
Multi-tiered approach spanning 
local and remote resources
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Orthros – General purpose distributed-memory compute cluster
~27 TFLOP/s CPU cores
Sayre – Single node GPU system for Bragg CDI reconstructions
~111 TFLOP/s
5 x Ti 2080 | 2 x P100 | 1 x Ti 1080 | 1 x Quadro RTX 8000 GPUs
Axinite – Single node GPU system for CSSI and XPCS data processing
~155 TFLOP/s
4 x A6000 GPUs
Monas – 4 node GPU cluster for ptychography reconstructions
~430 TFLOP/s
8 x Ti 2080 GPUs per node

Advanced Photon Source (APS)

BeBop
~1,750 TFLOP/s
43,344 Intel Broadwell cores | 65,536 Intel Phi cores
Swing
~925 TFLOP/s
48 NVIDIA A100s | 768 AMD EPYC cores
Blues
~198 TFLOP/s
6,000 compute cores

Argonne Laboratory Computing Resource Center (LCRC)

Theta & Theta GPU
Theta: 281,088 Intel Phi cores 

(~11.3 PFLOP/s)
Theta GPU: 192 NVIDIA A100s

Polaris
~44 PFLOP/s (~4 PFLOPS/s for  
exploring use by experimental 

facilities)

Aurora
Anticipated 2023
Intel CPUs / GPUs

> 1 EXAFLOP/s

Argonne Leadership Computing Facility (ALCF)



Argonne Leadership Computing Facility (ALCF)
Coupling APS instruments with ALCF supercomputers to accelerate 
scientific discovery
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Polaris Supercomputer
44 petaflop/s peak performance

Aurora Supercomputer (online in 2023)
2 exaflop/s peak performance

§ APS jobs can launch on-demand within seconds, preempting other running jobs
§ Deploying a >1 terabit/s network between the APS and the ALCF



Network Architecture

§ 3-tier network infrastructure: facility, sector, hutch
§ Supervisory Control and Data Acquisition (SCADA) architecture 

to better support controls, data, and regular network traffic
§ Installed a new fiber plant for all APS beamlines; 768 pairs of 

new single mode fiber from the APS computer room to 
beamline networks

§ Installed new core network switches capable of 100 Gbps links
§ Procuring new sector and hutch switches for APS sectors 

capable of 100 Gbps links
§ Recently upgraded the APS <-> ALCF network connection to 

200 Gbps; upgrade to a terabit/s network in the future
§ Adding wireless access points inside hutches and installing 

CAT 6A 10 Gbps copper cable at beamlines

Updates underway to support APS-U Era 
data and computing requirements
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Globus is the Glue Connecting the APS to 
Advanced Computing Resources
The APS is leveraging Globus as a computational and data fabric to 
enable advanced computing and data management
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§ Globus Automation and Compute Services are 
enabling technique and instrument specific data 
processing workflows 

§ Technique / instrument tailored web portals 
enable viewing  and searching data, and re-run 
data processing



Team: Miaoqi Chu, Hannah Parraga, Sinisa Veseli, John Hammonds, 
Qingteng Zhang, Eric Dufresne, Suresh Narayanan, Ryan Chard, 

Nickolaus Saint, Rafael Vescovi, Ben Blaiszik, William Allcock

Speckle data from the APS 8-ID-I beamline (top left) is 
automaticity transferred to the Polaris supercomputer 

(bottom left) where it is processed on-demand and 
displayed in a Globus web portal (right). 

The Polaris supercomputer and Globus enable 
on-demand data analysis at the APS
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Team: Michael Prince, Ryan Chard, Bill Allcock, Gürsoy, Doğa, Barbara 
Frosik, Hannah Parraga, Dina Sheyfer, Jonathan Tishler

Data from the new coded aperture at APS 34-ID-E (top 
left) is automaticity transferred to the Polaris 

supercomputer (top right) where it is reconstructed on-
demand (bottom)



Data Reduction
AI/ML Enabled Science at the APS

Knowledge ExtractionExperiment Steering
PtychoNN: Machine learning ptychography 
reconstruction
▪ 100s of times faster and requires up to 5 times less 

data than conventional iterative approaches

BraggNN: Machine 
learning method for 
determining Bragg peak 
locations from far-field 
high-energy diffraction 
microscopy data
▪ >200 times faster than 

conventional pseudo-
Voigt profiling approach

TomoGAN: Generative adversarial network improves 
the quality of tomographic reconstructions
▪ Uses up to 1/16th less dose or projections

Cherukara, M., Zhou, T., Nashed, Y., Enfedaque, P., Hexemer, A., Harder, R.J., Holt, 
M. V., “AI-enabled high-resolution scanning coherent diffraction imaging,” Applied 
Physics Letters 117, 044103 (2020).
Liu, Z., Sharma, H., Park, J. S., Kenesei, P., Miceli, A., Almer, J., Kettimuthu, R., 
Foster, I., “BraggNN: fast X-ray Bragg peak analysis using deep learning,” IUCrJ 9, 
104-113 (2022).

Liu, Z., Bicer, T., Kettimuthu, R., Gursoy, D., De Carlo, F. and Foster, I., “TomoGAN: 
low-dose synchrotron x-ray tomography with generative adversarial networks: 
discussion,” JOSA A, 37(3), pp.422-434 (2020).
Sivaraman, G., Gallington, L., Krishnamoorthy, A. N., Stan, M., Csányi, G., Vázquez-
Mayagoitia, Á., Benmore, C. J., “Experimentally driven automated machine-learned 
interatomic potential for a refractory oxide,” Physical Review Letters, 126(15), 
156002 (2021).

Generating interatomic potentials: Unsupervised 
machine learning generated interatomic potentials for 
a refractory oxide

Contacts: Saugat Kandel, Tao Zhou, CD Phatak, et al. 
Zhang, Y., Godaliyadda, G. M., Ferrier, N., Gulsoy, E. B., Bouman, C. A., & Phatak, 
C., “SLADS-Net: supervised learning approach for dynamic sampling using deep 
neural networks,” Electronic Imaging, 2018(15), 131-1.

Smart Data Acquisition: Machine learning optimizes 
acquisition scanning path in real-time
▪ Motor movement is reduced by 80%

Scan points

§ Diffraction 
measurements 
initialize an 
active-learner 
that iteratively 
improves an 
ML model

Autonomous micro-CT with AI-steer

*Reconstruction code is based on TomoStream’s conjugate gradient method.

projs, 
theta, 
center

A software-defined solution for data reduction with streaming
feedback for sample position and detector control!
https://github.com/aniketkt/TomoEncoders

TomoEncoders
3D Computer Vision AI

Sparse Volume 
Reconstruction 

Engine

3D Convolutional 
Neural Nets

Point Cloud 
Processing

3D 
Patches

3D 
PatchesTomoScanStream

interface

CMOS
Camera

request

data



SUMMARY

§ Big data problem very real at APS, existing and next generation light sources 
§ Hundreds of Pb per year will be generated at APS after the upgrade
§ Complexity, multi-modality, operando science is becoming the norm 
§ Exploit full computing continuum, including learning from real time data 
§ Delivering rapid analysis at scale is critical and will provide competitive 

advantage 
§ Many other opportunities, for example:

– Accelerator control and fault detection with edge devices 
– Coupling simulations, advances in surrogate models with experimental 

science
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