4th GRP Workshop@Limassol/Cyprus

국가와 국민을 위한 데이터 생태계 중심기관 KISTI

Introduction to Asi@Connect/TEIN*CC & APAN APRP WG Activities

> KISTI/KREONET Jeonghoon Moon 9th Oct 2023

KST Contents

1. Overview of the project

- Overview & Background

2. Activities of the project

- Activity 1
- Activity 2
- Activity 3

3. APAN & APRP WG

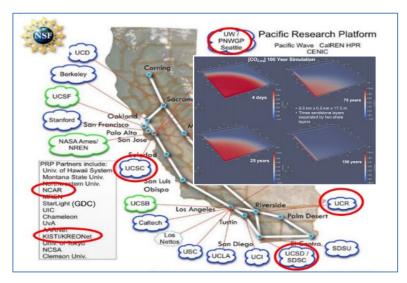
- APAN 56th Meeting
- APRP WG
- 4. Future plan & Conclusion

Overview of the project

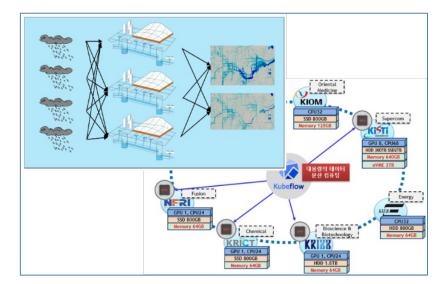
[1] Overview & Background

Overview of APRP Project

- Title : Building a high bandwidth distributed HPC
- Work Package : WP4
- Participants : Korea, Australia, Malaysia, Pakistan
- Duration : 1st April 2022 31st July 2023
- Budget : 150K Euro
- Lead & Co-applicant :
 - Jeonghoon Moon : Korea Institute of Science and Information Technology(KISTI)/KR
 - Andrew Howard: National Computational Infrastructure(NCI)/AU
 - Mohammad Asif Khan : Perdana University/MY
 - Nor Asilah Wati Abdul Hamid : University Putra Malaysia(UPM)/MY
 - Syed Asif Raza Shah : Sukkur IBA University(SIBAU)/PK



European Union


Project Background

국가와 국민을 위한 데이터 생태계 중심가관 KISTI

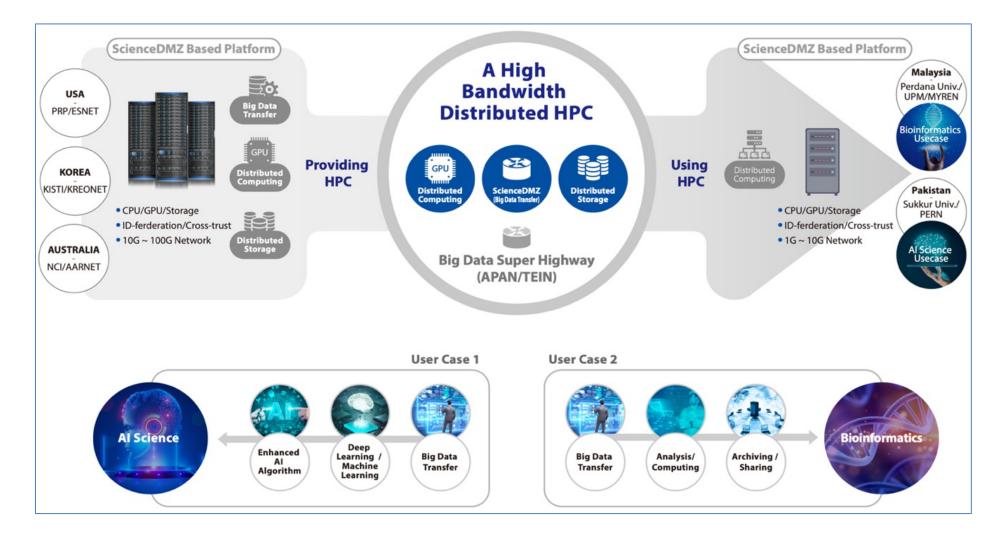
- Increasing big data \rightarrow Required high throughput/capacity network \rightarrow Big data super highway
- Lack of IT infrastructure → Computing resources → Distributed/Shared HPC
- Linked ScienceDMZs : Research Platform + Kubernetes = High bandwidth distributed HPC

Example1: Using distributed computing resources over US NSF funded PRP and Computing for analysis of CO2 sequestration

Example2: Using distributed computing resources and LSTM data over Korea government project for climate analysis by KRP

PRP→NRP→GRP→APRP→Asi@Connect project

Activities of the Project


[1] Activity 1[2] Activity 2[3] Activity 3

Architecture of a High Bandwidth Distributed HPC

• ScienceDMZ-based high bandwidth networking architecture (participating countries via TEIN)

T

- Interconnect available computing recourses in a distributed environment
- Resource of computing servers will be managed by container cloud technology

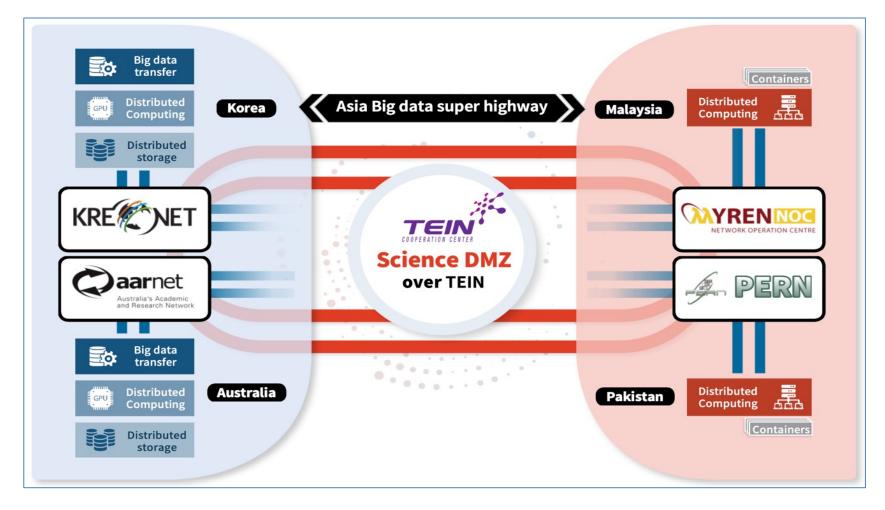
Building Strategy

• Activity1: Building a big data super-highway based on TEIN

- KREONET(KR), AARNet(AU), MYREN(MY), PERN(PK)
- Deploy ScienceDMZ/DTN
- Big data transfer via ScienceDMZs

• Activity2: Building a distributed HPC platform

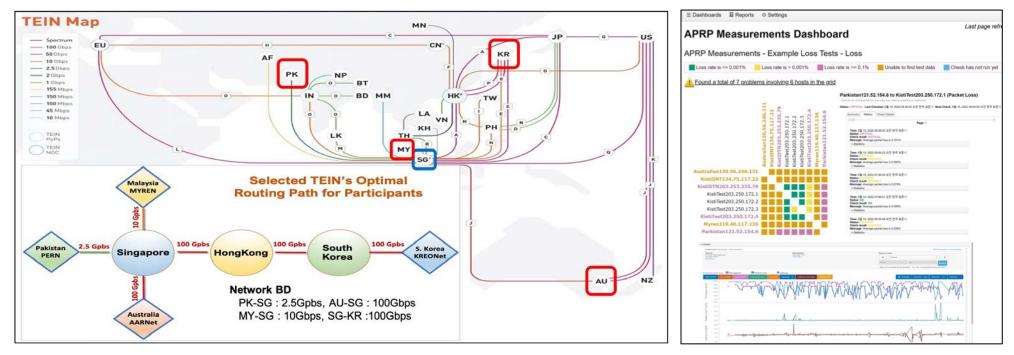
- Research Platform by Kubernetes based on container
- CPU/GPU/Memory and Storage


• Activity3: Presenting pilot use cases

- Bio-Science (MY)
- AI-Science (PK)

دtivity 1 اللغة

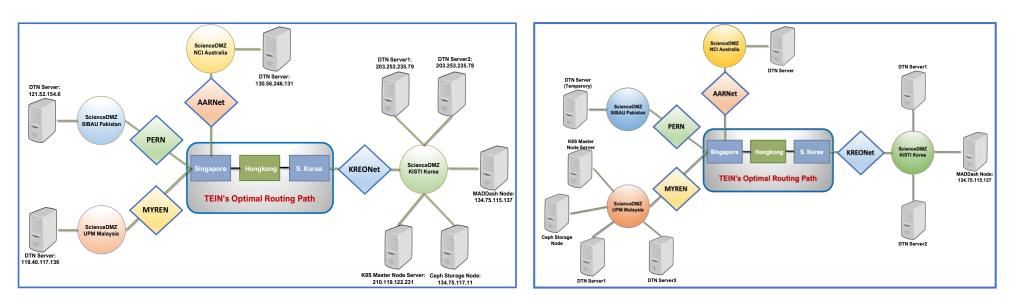
- Interconnecting participant NRENs via TEIN (KROENET, AARnet, MYRen, PERN)


- Installing DTN at each participant institutes (ScienceDMZ)
- Measuring the ScienceDMZ using a monitoring system (PerfSONAR)

Detail of Activity 1 – 1 Interconnecting participant NRENs via TEIN

• Activity1: Building a big data super-highway based on TEIN

- Interconnecting participant NRENs via TEIN
- Installing and adding local DTNs
- Complete setup PerfSONAR

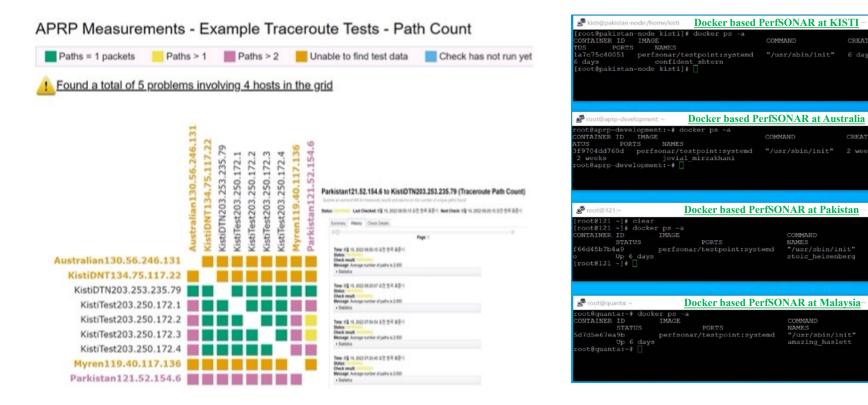


NREN topology & Bandwidth

PerfSONAR

Detail of Activity 1 – 2 Installing and adding local DTN concerning and adding a

- Installing and adding local DTN
 - Configuration each DTNs base on the local network topologies
 - Re-locate DTNs and network paths



The previous end-to-end network topology of temporary DTN servers

The updated end-to-end network topology of DTN servers at participating countries

KiSTi **Detail of Activity 1 – 3 Measuring the ScienceDMZ**

- Measuring the ScienceDMZ using a monitoring system ٠
 - PerfSONAR Measurement of Network performance and status
 - Docker-based perfSONAR install and adding a MaDDash

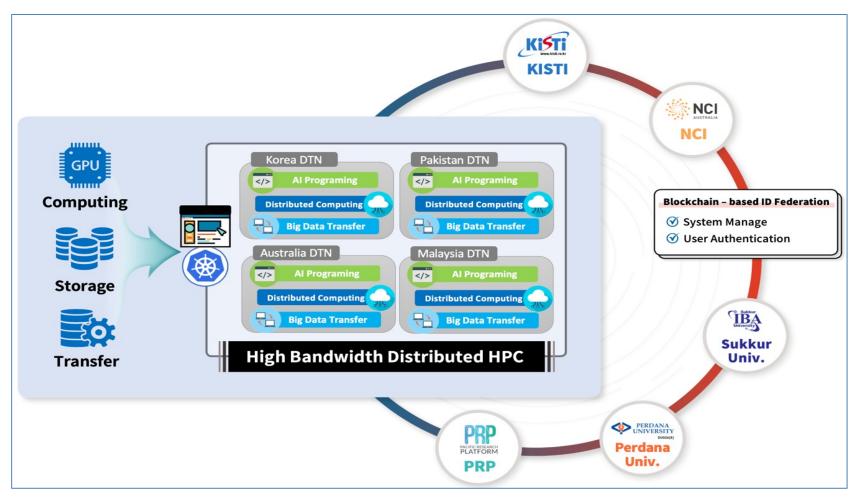
MaDDash Dashboard: Example of Traceroute Tests among DTN servers

Docker-based PerfSONAR test-points running at participating institutions

6 days ago

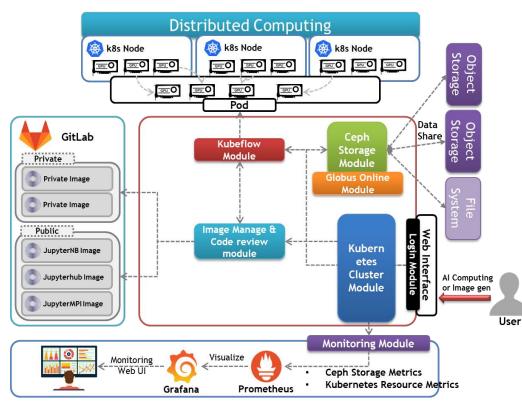
2 weeks ag

10 days

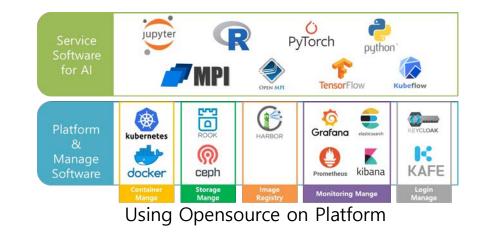

CREATED

COMMANI

amazing haslett

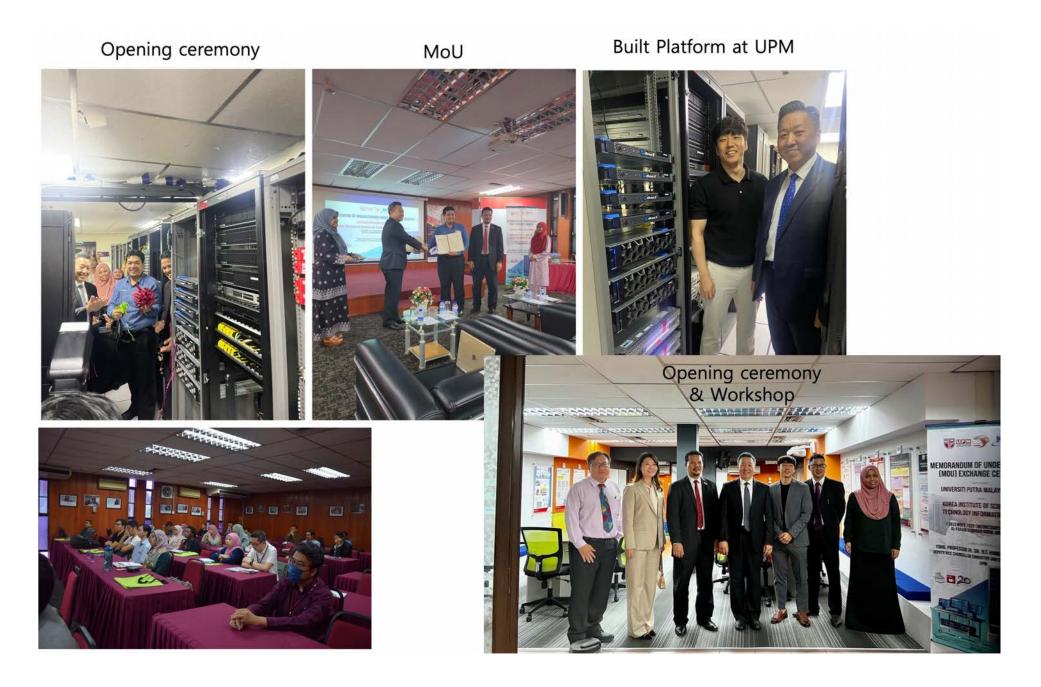

دtivity 2 کھ

- Activity 2: Building a distributed HPC platform
 - Building a platform to manage CPU/GPU computing resources, including storage by Kubernetes
 - Building block-chain based ID federation
 - Building an easy user interface

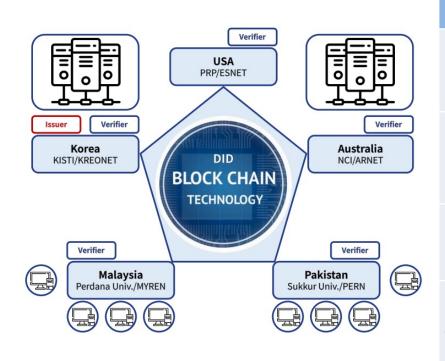


Detail of Activity 2-1 Building a platform to manage CPU/GPU

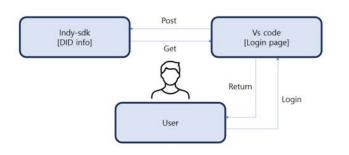
- Building a platform to manage CPU/GPU computing resources, including storage
 - Building a platform to manage CPU/GPU computing resources, including storage by Kubernetes
 - Kubernetes servers specification
 - Using open source


Asia-Connect Platform Architecture

1GB
1GB
1GB
100GB
1


Kubernetes Servers Specification

Detail of Activity 2-1 Building a platform to manage CPU/GPU



Kisti

Detail of Activity 2 – 2 User management base on Bock-Chain

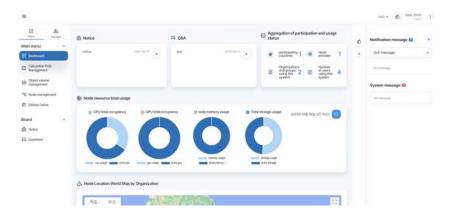
Asi@Connect Platform Block chin Diagram

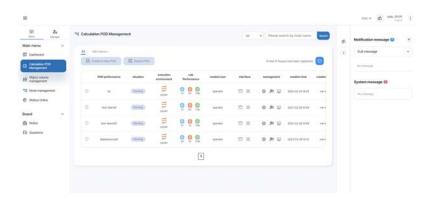
A simple process

Function	Description
open_wallet	Call the wallet.open_wallet function provided by the Indy SDK to open the wallet. If the wallet doesn't exist, create it and open it.
get_did_info	Call the Indy SDK's didlist_my_dids_with_meta function to retrieve information about the user's Distributed Identifier (DID) from the wallet. The user's DID information is returned in JSON format.
run	It runs the open_wallet and get_did_info functions. It also opens the wallet, retrieves the DID information, and stores it in the global variable did_info.
compare_did_ info	Compares the DID and verkey information entered by the user with the DID information stored in did_info. Returns True if the entered DID and verkey exist in did_info.
route '/'	Provide a login form on a web page that requires the user to enter their DID and Verkey. When the user tries to log in after entering the DID information, the / route is called with the POST method. This calls the compare_did_info function with the user's DID and Verkey as arguments and tries to authenticate. Depending on the result of the compare_did_info function, the user is connected to the Naver homepage if the authentication is successful, or redirected to the Google homepage if it fails.

Table Core functions in webpage code16

Detail of Activity 2-3 Easy user interface

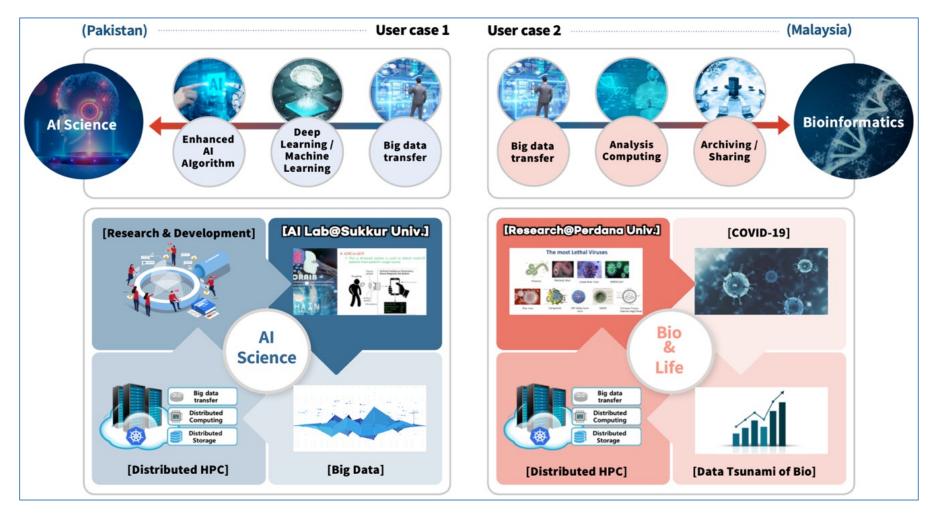

1. Source Code development for AI model←


KISTI

-

- 2. Create image importing the source code←
- 3. Distributed Computing Yaml file generation and implementation←
- 4. Check the Distributed Computing result
- 5. Next job <u>send</u> a <u>yaml</u> file to <u>kubelet</u>←

How need resources?	
GPU	개
CPU	Core
Memory	MB
Select your image or gen o image1 o image2 o Generation	eration
Attach the source code	Find
Excute	cel


Status of the selected pod

Check the resources

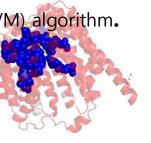
• Activity 3: Presenting pilot application use-cases

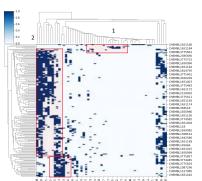
- Bioinformatics-based Science use-cases
- AI-based Science use-cases

Detail of Activity 3 – Case Studies of AI and Bio Science

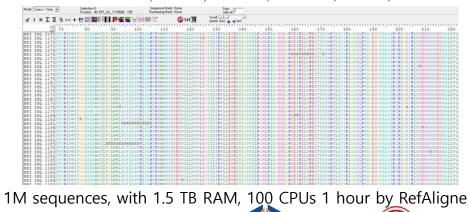
• Activity 3: Presenting pilot application use-cases

- Bio-Science use-cases by Asif Khan(Perdana Univ. Malaysia and Turkey)
 - Multiple sequence alignment (MSA) of large number of sequences on HPC
 - Applying distributed HPC in Drug Discovery and Molecular Simulation
- AI-Science use-cases by Asif Raza (Sukkur-IBA Univ. Pakistan)
 - Multiple object tracking for aerial view images
 - Distributed training(MNIST)/Support Vector Machine (SVM) algorithm.
 - Running Distributed MPI job


Multiple Object Tracking for Aerial View Images



KiSTi



Molecular Simulation: Binding Residues & Characteristics for 47-PHE, 19-ILE, 98-ARG, 140-PHE, 23-ILE, 22-VAL

Detail of Activity 3 – Examples of AI-Science

KiSTi

📽 kisti@asia-k8smaster/home/kisti/asil/tensorflow-kubeflow-exam	skes
apiVersion: "kubellow.org/vl"	
kind: "TFJob"	
metadata:	
name: "dist-mnist-for-e2e+te	ast "
spec: tfReplicaSpecs:	
PS	
replicast	One Parameter Server (PS)
restartPolicy: Never	
template:	
spect	
containers:	
- name: tensorflo	
image: asifraza,	/tf-dist-mnist-testing:latest unificate/Unified liew-testing:latest
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
and the state	company 1 di panaganan basa 1 (221)
resources	
limits:	
cpu: 2	
nodeSelector:	
zone: kisti	
Worker	
replicas: 2	Two Worker Nodes
restartPolicy: Never	
template:	
spec:	
containers:	
- name: tensorflo	
	/tf-dist-mnist-testing:latest #www.mann/tencortlageletting:letest
resources: limits:	Experimenting with 2xCPUs per Worker
CDU: 2	Experimenting with 2xer 05 per worker
Fremmingons	
E Enderse	
4 OVERLAS COM	more 1.4 respecting 1.670
nodeSelector	
zone: kisti	

Configuration of YAML file in which we configured one Parameter Server (PS) and Two Worker node. However, worker nodes will use the 2xCPUs to train the model in distributed way.

Distribu	ited Training S	tarted on Work	er Nodes		
ubeflow-	examples]#	kubectl get	pods -c	wide	
READY	STATUS	RESTARTS	AGE	IP	
1/1	Running			192.168.68.254	
1/1	Running		9s	192.168.68.249	
1/1	Running	0	9s	192.168.68.247	
Diete	ibutod Trainin	a Completed			
DISU	ibuteu fraifiifi	g completed			
		kubectl get	pods -c	wide	
			pods -c AGE	wide IP	
ubeflow-	examples]#	kubectl get			
ubeflow-	examples]#	kubectl get		IP	
ibeflow-e READY	examples]# STATUS	kubectl get RESTARTS 0	AGE	IP 192.168.68.2	
	1000-0000 READY 1/1 1/1 1/1 1/1	ubeflow-examples]# READY STATUS 1/1 Running 1/1 Running 1/1 Running	ubeflow-examples]# kubectl get READY STATUS RESTARTS 1/1 Running 0 1/1 Running 0	1/1 Running 0 9s 1/1 Running 0 9s 1/1 Running 0 9s	

Execution of distributed training on worker nodes created as pods by using Kubeflow's TensorFlow operator. Once distributed training completed then it shows the status as Completed

Sisti@asia-k8smaster;/home/kisti/asif/t 1660975669.850723:	Worker	0:	training	step	10045	done	(global	step:	19987)	^
1660975669.853131:	Worker	0:	training	step	10046	done	(global	step:	19988)	
660975669.855631:	Worker	0:	training	step	10047	done	(global	step:	19989)	
660975669.891212:	Worker	0:	training	step	10048	done	(global	step:	19990)	
660975669.894357:	Worker	0:	training	step	10049	done	(global	step:	19992)	
660975669.897589:	Worker	0:	training	step	10050	done	(global	step:	19994)	
660975669.901203:	Worker	0:	training	step	10051	done	(global	step:	19996)	
660975669.904117:	Worker	0:	training	step	10052	done	(global	step:	19998)	
660975669.906806:	Worker	0:	training	step	10053	done	(global	step:	20000)	
Fraining ends @ 16	50975669	9.9	06826							
fraining elapsed t:	ime: 12:	3.2	96151 s	То	tal Exc	cutior	n time b	v usin	g CPUs	
After 20000 trainin	ng step	(s)	, validat:						8	
[root@asia-k8smaste										

Results of distributed training of Dist-MNIST example. The total elapsed time of distributed training is 123.29 seconds by using 2xCPUs on per worker.

KISTI

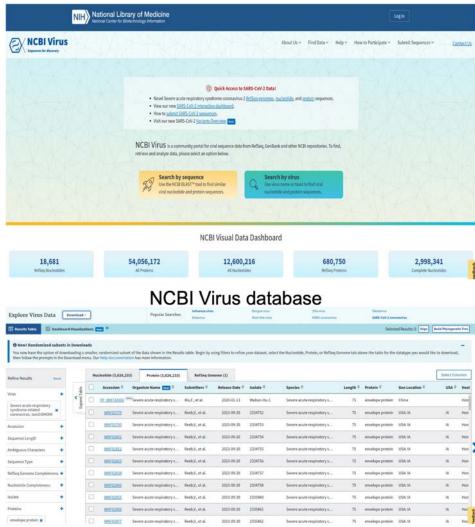
Detail of Activity 3 – Examples of AI-Science cont.

국가와 국민을 위 데이터 생태계 중심가관 KIS 1

@asia-k8smaster./home/kisti/asil/tensorflow-kubeflow	mamples	🛃 kisti@asia-k8smaster/home/kisti/asif/tensorflow-kubeflow-examples	- 0	1
		1660976095.789878: Worker 0: training step 16079 done (global step:	19986)	
		1660976095.792231: Worker 0: training step 16080 done (global step:		
		1660976095.794775: Worker 0: training step 16081 done (global step:		
		1660976095.796886: Worker 0: training step 16082 done (global step:		
S	One Parameter Server (PS)	1660976095.799147: Worker 0: training step 16083 done (global step:		
replicas: restartPolicy: Never		1660976095.801587: Worker 0: training step 16084 done (global step:		
		1660976095.803909: Worker 0: training step 16085 done (global step:		
		1660976095.806296: Worker 0: training step 16086 done (global step:		
containers: - name: tensorf	low	1660976095.808914: Worker 0: training step 16087 done (global step:		
	za/tf-dist-mnist-testing:latest address/tennerlics-teltin	1660976095.811960: Worker 0: training step 16088 done (global step:		
		1660976095.814662: Worker 0: training step 16088 done (global step:		
		1660976095.817131: Worker 0: training step 16089 done (global step:		
		Training ends @ 1660976095.817149	20000)	
		<pre>Iraining elapsed time: 42.016328 s Total Excution time by usi After 20000 training step(s), validation cross entropy = 1829.45</pre>	ing GPUs	
		After 20000 training step(s), valuation cross entropy = 1829.45		
rker		<pre>[root@asia-k8smaster tensorflow-kubeflow-examples]#</pre>		1
replicas; 2	Two Worker Nodes			
restartPolicy: Never template:				
		Results of total elapsed time of distributed training which	n is 42.01	1
<pre>containers:</pre>				
	za/tf-dist-mnist-testing:latest hallouradionsmilles-lestin	seconds. We can see that it clearly reduced the total train	ning time	Э
		because here we are using 1xGPU on per worker		
		because here we are using TXGFO on per worker	•	
resources:				
limits	Experimenting with 1xGPU per Worker			
nvidia.co	n/gpu : The second s			

Same configuration of YAML file that we use above, but the worker nodes are configured with the 1xGPU to train the model

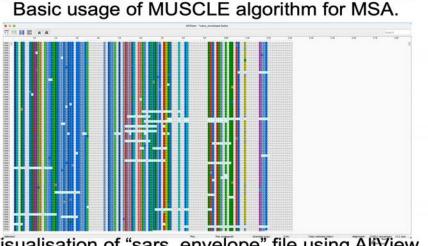
in distributed way.


Detail of Activity 3 – Examples of Bio-Science #1

Th

-

KISTI



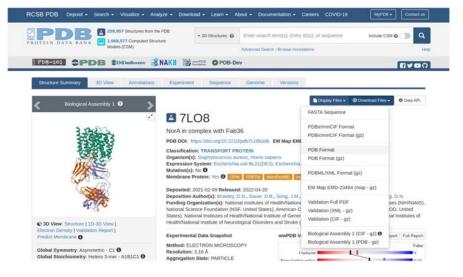
Filtering options to get SARS-CoV-2 Envelope protein

SCLE v3.8.1551 by Ro	bert C. Edgar
	muscle ed to the public domain. C. Nucleic Acids Res 32(5), 1792-97.
sic usage	
muscle -in <inputf< td=""><td>'ile> -out <outputfile></outputfile></td></inputf<>	'ile> -out <outputfile></outputfile>
mmon options (for a	complete list please see the User Guide):
<pre>-in <inputfile> -out <outputfile> -diags -maxiters <n> -maxiters <n> -maxiters <h> -maxiters <h> -tml -msf -clw -clwstrict -log[a] <logfile> -quiet -version</logfile></h></h></n></n></outputfile></inputfile></pre>	Find diagonals (faster for similar sequences) Maximum number of iterations (integer, default 16) Maximum time to iterate in hours (default no limit) Write output in HTML format (default FASTA) Write output in GCG MSF format (default FASTA) Write output in CLUSTALW format (default FASTA) As -clw, with 'CLUSTAL W (1.81)' header
stest possible (amin	ry fast, avg accuracy similar to T-Coffee): -maxiters 2 10 acids): -maxiters 1 -diags -sv -distance1 kbit20_3 eotides): -maxiters 1 -diags
SCLE v3.8.1551 by Rob	ert C. Edgar
tp://www.drive5.com/m is software is donate	uscle d to the public domain.

Th Please cite: Edgar, R.C. Nucleic Acids Res 32(5), 1792-97.

*** WARNING *** Assuming Amino (see -seqtype option), invalid letters found: J sequences 3626233 seqs, lengths min 1, max 76, avg 74

Visualisation of "sars envelope" file using AliView

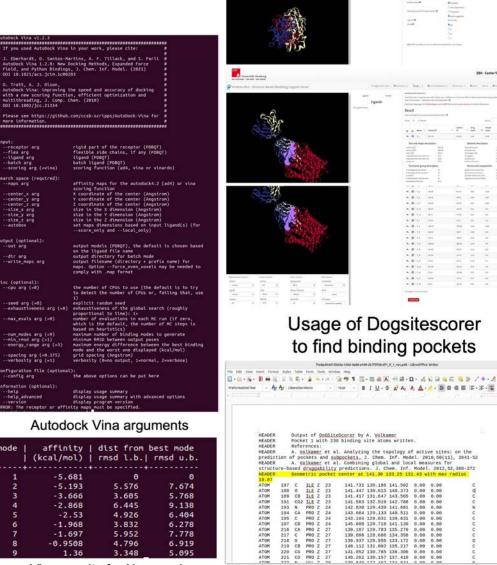

Detail of Activity 3 – Examples of Bio-Science #2

- 74 - -

- -

Downlin Nanturg

Applying distributed High-Performance Computing in Drug Discovery and Molecular Simulation



KiSTi

3D structure of NorA efflux pump stored in PDB

							Availability				
ZINC11 Aduorim	ZINC640 Patterior	ZINC803 Tradination	ZINC884 Addated	ZINC920 Path	ZINC1099 Calcende	ZINC1590 Indiation	60 For Sale Not For Sale	ZINC1719 Melauren	ZINC2101 Ars	ZINC2119 Sullater	ZINC2216 Hand
pig	ratar	xtor	try	<u>}</u> -0-	<u>}-0-</u> -	70	Now Wait Ok Bloactive And Drogs Eda	Jug.		20+	,bro
								subset: FDA Approved de	ugs, per DrugBank		
ZINC3383	ZINC3742 Notkinkin	ZINC4009 Difusion	ZINC4268	ZINC4321 Zerman	ZINC4739	21NC5276	to Mat to Trials	20NC5970	ZINC6585	ZINC6694 Ste	ZINC6729
rad	rfao	30-	pg	-120	ofo	-450	in Vitra In Vivo Wold Biogene	pr ?	.doda	100	-10-9
ZINC7486	ZINC7571	ZINC7637	ZINC8107 Monteced	ZINC10465	ZINC10466	ZINC10457	Endogenous Metabolites Colur	ZINC18154	ZINC20220 Carofission	ZINC20229 Subant	ZINC2178
\$~\$>-	ar	a-sp	-0820	8rd	3-9-0	- prod	Appropriates Named Reactively Ancolyne Clean	200	rfac	difer.	fa
20NC23458	ZINC23461	ZINC24945 Dravetsitra	ZINC26467	ZINC26597	ZINC26599	ZINC28531	Her Ok Reactive Ok Standard Ok	ZINC30108	ZINC30344	210030668	ZINC3066 Ro2PhentN

Selecting organisms from the ZINC database and downloading data

Vina results for Nora and bacteria-fda ligand 001

3.348

5.095

1.36

Dogsitescorer results of the P1

ter at 141,36 133,25 131.43 w

B / U· → A A A A· · · B = = = · · · · · · · ·

Other Achievement

Conference, Workshop & Publications

- Workshop: 1st Dec 2022@UPM
- Conference: 2nd June 2023@UPM)
- 2 Publications in Interanational Journals

User Tutorial

KiSTi

- 2nd June 2023@UPM, Target for several application areas
- Manager Tutorial
 - 3rd June 2023@UPM, Construction & Operation
 - of Platform, Management issues
- Training Network & System engineering
 - 2 for MY, 2 for PK
- Education Video Clips
 - How to use platform for application
- Deploy for University Class
 - Sukkur-IBA university
- 2 APAN APRP WG Session
 - APAN 54th & 55th
- Technical report
 - High bandwidth distributed Platform technical document
- R&E Collaborations
 - 1 MoU with UPM at MY
 - New partners for 3rd party research areas
 - Al Ghulam Mujtaba
 - Molecular simulation Tejo Bimo
 - Avian Infection diseases Mat Isa Nurfiza

APAN & APRP WG

- [1] APAN 56th Meeting
- [2] APRP WG

APAN APRP(Asia-Pacific Research Platform) WG

 Since 2018 APRP WG initiated at APAN 45th 2018 in Singapore APRP – Asia Pacific Research Platform Working Group APAN meeting held 2 times in a year

• Objectives

The goal is to share 'xRP' experience with the members and to propose the establishment of an APRP which will be part of the GRP (Global Research Platform).

- Promote HPC ecosystem in the Asia-Pacific.
- Engage APAN members and ASEAN countries
- Towards the setting up an Asia Pacific Research Platform (APRP) and become a part of a Global Research Platform
- Target

Academia and Industry

Executive member

Chair : Jeonghoon Moon, KISTI, Korea Co-Chair : Andrew Howard, NCI, Australia Secretary : Asif Khan, Perdana Univ. Malaysia

Asi@Connect 5th Call project by TEIN*CC

Title : A High bandwidth distributed HPC (1st April 2022 – 31st July 2023)

APAN 56th Meeting & APRP WG session

1

• APAN 56th APRP Meeting

- Held at Colombo in Sri Lanka(21st to 25th 2023)
- Title is "AI and HPC: Better Together"

• APRP WG: 2 Sessions (23rd Aug, 2023)

- Infrastructure/Technology & Applications
- 2 sessions and 14 Presentations from 8 countries

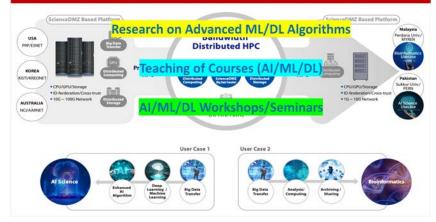
Session 1

- Around 40 attendees (on/off-line)

Session 2

Se	ssion1. Infr	a/Technical part (Chair, Jeonghoon Moon)
1	0900-0905	Jeonghoon Moon – Introduction APRP WG in APAN (KISTI/Korea)
2	0905-0915	Jeonghoon Moon - Building a high bandwidth distributed HPC (KISTI/Korea)
3	0915-0930 Remote	Kihyeon Kim - Asia-Pacific Research Platform update (KISTI/Korea)
4	0930-0945 Remote	Asif Raza - AI Science user cases and achievements using distributed HPC platform (Sukur-IBA Univ./Pakistan & FermiLab in US)
5	0945-1000 Remote	Asif Khan - Update of HPC for Bio-Science: ViVA platform for viral informatics (Perdana Univ./Malaysia)
6	1000-1015	Vincenzo Capone - The LHCONE multidomain service, a global infrastructure to support High Energy Physics (GEANT/EU)
7	1015-1030 Remote	Mat Isa Nurulfiza - Data driven in the fight against avian infectious diseases (UPM/Malaysia)
8	1030-1040	Susumu Date - Update of RED ONION using DTN solution in Osaka Univ. (Osaka Univ./Japan)

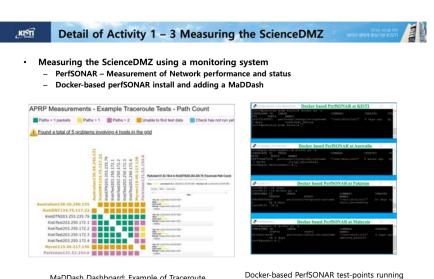
Se	Session2, Application/Infra part (Chair, Andrew Howard)							
1	1100-1115	Andrew Howard - NCI Research Platform and country update (NCI/Australia)						
2	1115-1130 Remote	Kiwook Kim - Update of ScienceloT and Wireless Transmission Scientific data (KISTI/Korea)						
3	1130-1145 Remote	Nor Asilah - Distributed HPC at My and country update (UPM/Malaysia)						
4	1145-1200	Saranjeet Kaur Bhogal - Navigating the Research Software Engineering Community Landscape in Asia (Research Software) Alliance)						
5	1200-1215 Remote	Bimo Tejo - Role of Molecular dynamics in drug discovery (UPM/Malaysia)						
6	1215-1230	Alex Moura/Jysoo Lee - KAUST & Saudi Arabia update (KAUST/Saudi Arabia)						


KISTI **Summary of Sessions** KISTI BEAMAGAMANTER * TWO Objectives of Wireless Network 40/14 SAVIE AND SAV 1) 60GHz Wireless : Inter-building Fixed Wireless Backbone - Builds wireless links b/w buildings, as a part of the backbone network Building A Building B SDN SDN 60GHz 60GHz Serve Server SW SW Wireless Wireless Device Device 60GHz : high data rate, narrow beam width, low penetrability → Suitable for fixed, high-speed wireless backbone in LoS environments 2) Wi-Fi(2.4GHz / 5GHz) Wireless : In/Outdoor Wireless Access

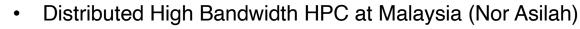
- Connects user equipments to network for test and demonstration
 - AI Science Use Cases Using Distributed HPC Platform(Asif Raza)

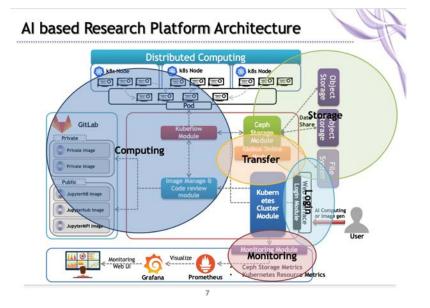
 60GHz Wireless Communication based Inter-building Backbone Network(Kiwook Kim)

Utilization of Platform for AI Research & Education


• The LHCONE Multidomain Service (Enzo Capone)

Summary of Sessions cont.




Assoc. Prof. Dr. Nor Asilah Wati Abdul Hamid, Chairperson, International Conference for High Bandwidth Distributed HPC Acting Director, Institute for Mathematical Research (INSPEM), UPM.

 Construction of Asi@connect Project Asia Pacific Research Platform (Kihyeon Kim)


MaDDash Dashboard: Example of Traceroute Tests among DTN servers

1

 Asi@Connect project: Building a high bandwidth distributed HPC (Jeonghoon Moon)

21

Future plan & Conclusion

• Benefits to TEIN and its Community

- Networking/computing infrastructure over 4 NRENs based on TEIN
- Promoting Asian research/education by utilizing TEIN-based distributed HPC resources
- Several outcomes will be derived

• Visibility

- Promote technical and academic achievement
- Communicate innovation and practicality achievement

Sustainability of the Activity/Program

- Using APAN APRP WG for managing and operating
- Expanding the use cases in Asia & Additional collaboration with Asian countries
- Motivating further collaborations via TEIN

• Extension for 3rd party research areas

- Smart Agriculture
- Environmental research on climate change
- Cloud computing & Wireless communication

